Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1338492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380318

RESUMO

Modified vaccinia virus Ankara is a versatile vaccine vector, well suited for transgene delivery, with an excellent safety profile. However, certain transgenes render recombinant MVA (rMVA) genetically unstable, leading to the accumulation of mutated rMVA with impaired transgene expression. This represents a major challenge for upscaling and manufacturing of rMVA vaccines. To prevent transgene-mediated negative selection, the continuous avian cell line AGE1.CR pIX (CR pIX) was modified to suppress transgene expression during rMVA generation and amplification. This was achieved by constitutively expressing a tetracycline repressor (TetR) together with a rat-derived shRNA in engineered CR pIX PRO suppressor cells targeting an operator element (tetO) and 3' untranslated sequence motif on a chimeric poxviral promoter and the transgene mRNA, respectively. This cell line was instrumental in generating two rMVA (isolate CR19) expressing a Macaca fascicularis papillomavirus type 3 (MfPV3) E1E2E6E7 artificially-fused polyprotein following recombination-mediated integration of the coding sequences into the DelIII (CR19 M-DelIII) or TK locus (CR19 M-TK), respectively. Characterization of rMVA on parental CR pIX or engineered CR pIX PRO suppressor cells revealed enhanced replication kinetics, higher virus titers and a focus morphology equaling wild-type MVA, when transgene expression was suppressed. Serially passaging both rMVA ten times on parental CR pIX cells and tracking E1E2E6E7 expression by flow cytometry revealed a rapid loss of transgene product after only few passages. PCR analysis and next-generation sequencing demonstrated that rMVA accumulated mutations within the E1E2E6E7 open reading frame (CR19 M-TK) or deletions of the whole transgene cassette (CR19 M-DelIII). In contrast, CR pIX PRO suppressor cells preserved robust transgene expression for up to 10 passages, however, rMVAs were more stable when E1E2E6E7 was integrated into the TK as compared to the DelIII locus. In conclusion, sustained knock-down of transgene expression in CR pIX PRO suppressor cells facilitates the generation, propagation and large-scale manufacturing of rMVA with transgenes hampering viral replication.


Assuntos
Vacinas Sintéticas , Vírus Vaccinia , Ratos , Animais , Vírus Vaccinia/genética , Linfócitos T CD8-Positivos , Transgenes
2.
Nat Biomed Eng ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749309

RESUMO

The threat of spillovers of coronaviruses associated with the severe acute respiratory syndrome (SARS) from animals to humans necessitates vaccines that offer broader protection from sarbecoviruses. By leveraging a viral-genome-informed computational method for selecting immune-optimized and structurally engineered antigens, here we show that a single antigen based on the receptor binding domain of the spike protein of sarbecoviruses elicits broad humoral responses against SARS-CoV-1, SARS-CoV-2, WIV16 and RaTG13 in mice, rabbits and guinea pigs. When administered as a DNA immunogen or by a vector based on a modified vaccinia virus Ankara, the optimized antigen induced vaccine protection from the Delta variant of SARS-CoV-2 in mice genetically engineered to express angiotensin-converting enzyme 2 and primed by a viral-vector vaccine (AZD1222) against SARS-CoV-2. A vaccine formulation incorporating mRNA coding for the optimized antigen further validated its broad immunogenicity. Vaccines that elicit broad immune responses across subgroups of coronaviruses may counteract the threat of zoonotic spillovers of betacoronaviruses.

3.
J Pharm Biomed Anal ; 235: 115596, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37540995

RESUMO

Monoclonal antibodies (mAbs) used as therapeutics need comprehensive characterization for appropriate quality assurance. For analysis, cost-effective methods are of high importance, especially when it comes to biosimilar development which is based on extended physicochemical characterization. The use of forced degradation to study the occurrence of modifications for analysis is well established in drug development and may be used for the evaluation of critical quality attributes (CQAs). For mAb analysis different procedures of liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses are commonly applied. In this study the middle-up approach is compared to the more expensive bottom-up analysis in a forced oxidation biosimilar comparability study. Bevacizumab and infliximab as well as biosimilar candidates for the two mAbs were forcefully oxidized by H2O2 for 24, 48 and 72 h. For bottom-up, the reduced and alkylated trypsin or Lys-C digested samples were analysed by LC-MS with quadrupole time-of-flight mass analyser (LC-QTOF-MS) to detect susceptible residues. By middle-up analysis several species of every subunit (Fc/2, light chain and Fd') were detected which differed in the number of oxidations. For the most abundant species, results from middle-up were in line with results from bottom-up analysis, confirming the strength of middle-up analysis. However, for less abundant species of some subunits, results differed between the two approaches. In both mAbs, the Fc was extensively oxidized. In infliximab, additional extensive oxidation was found in the Fab. Assignment to specific amino acid residues was finally possible using the results from bottom-up analyses. Interestingly, the C-terminal cysteine of the light chain was partially found triply oxidized in both mAbs. The comparison of susceptibility to oxidation showed high similarity between the reference products and their biosimilar candidates. It is suggested that the findings of middle-up experiments should be complemented by bottom-up analysis to confirm the assignments of the localization of modifications. Once the consistency of results has been established, middle-up analyses are sufficient in extended forced degradation biosimilar studies.


Assuntos
Medicamentos Biossimilares , Infliximab/química , Bevacizumab , Medicamentos Biossimilares/química , Peróxido de Hidrogênio , Anticorpos Monoclonais/química , Espectrometria de Massas/métodos
4.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259374

RESUMO

Practically the entire global population is infected by herpesviruses that establish lifelong latency and can be reactivated. Alpha-herpesviruses, herpes simplex viruses 1 and 2 (HSV-1/HSV-2) and varicella zoster virus (VZV), establish latency in sensory neurons and then reactivate to infect epithelial cells in the mucosa or skin, resulting in a vesicular rash. Licensed antivirals inhibit virus replication, but do not affect latency. On reactivation, VZV causes herpes zoster, also known as shingles. The 76-year-old first author of this paper published an autobiography of his own severe herpes zoster ophthalmicus (HZO) infection with orbital edema, which is considered an emergency condition. Acyclovir (ACV) treatment was complemented with an immunostimulatory viral therapy, which resolved most symptoms within a few days. The orally administered live-attenuated infectious bursal disease vaccine virus (IBDV) delivers its double-stranded RNA (dsRNA) cargo to host cells and activates the natural antiviral interferon (IFN) gene defense system from within the host cells. IBDV has already been demonstrated to be safe and effective against five different families of viruses, hepatitis A virus (HAV), hepatitis B and C virus (HBV/HCV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and varicella zoster virus (VZV). Here we propose a short phase I/II trial in elderly shingles patients who will be assigned to receive either ACV monotherapy or ACV combined with R903/78, an attenuated immunostimulatory IBDV strain. The primary endpoints will be safety, but the efficacy of the combination therapy against the ACV monotherapy also will be assessed.

5.
Bioengineering (Basel) ; 10(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37370584

RESUMO

Analytical methods fr direct quantitative N-glycan analysis require a sequence of sample preparation and clean-up steps that result in reduced glycan recovery. Therefore, we aimed to combine glycan release and labeling steps. Based on the hypothesis that the reaction mechanism for oxidative chemical glycan release comprises a stable glycan isocyanate intermediate, we investigated whether this could be exploited for the in-situ preparation of fluorescent glycan conjugates. ANTS-labeled N-glycans were derived from chicken ovalbumin via an in-situ chemical release/coupling approach and by standard Peptide-N-Glycosidase F (PNGase F) digestion/reductive amination. Synoptic fluorescence-assisted carbohydrate electrophoresis with UV detection (FACE-UV) analysis yielded matching patterns of fluorescent N-glycan bands in the expected electrophoretic mobility range between hexose units GU-5 and GU-11 of the standard. Anthranilamide (2-AB)-glycan conjugates prepared from a test glycoprotein carrying a predominant Core-F glycan gave single predominant peaks in hydrophilic interaction chromatography with fluorescence detection (HILIC-FLD) and electrospray ionization mass spectrometry (ESI-MS) spectra in agreement with sodiated triply charged Core-F-AB conjugates for both the standard and the in-situ coupling methods. The Core-F-AB conjugate prepared by the in-situ coupling approach had a slightly elevated retention time on HILIC-FLD and an ESI-MS m/z peak in line with a urea-bonded glycan-AB conjugate, with closed pyran ring structures on the glycan moiety. Glycan isocyanates intermittently formed during chemical glycan release, which could be utilized to prepare labeled glycan samples directly from glycoproteins and fluorescent dyes bearing a primary amine functional group.

6.
Front Immunol ; 14: 1118523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911730

RESUMO

The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence. Next generation vaccines that confer specific and targeted immunity to broadly neutralising epitopes on the SARS-CoV-2 spike protein against different variants of concern (VOC) offer an advance on current booster shots of previously used vaccines. Here, we present a targeted approach to elicit antibodies that neutralise both the ancestral SARS-CoV-2, and the VOCs, by introducing a specific glycosylation site on a non-neutralising epitope of the RBD. The addition of a specific glycosylation site in the RBD based vaccine candidate focused the immune response towards other broadly neutralising epitopes on the RBD. We further observed enhanced cross-neutralisation and cross-binding using a DNA-MVA CR19 prime-boost regime, thus demonstrating the superiority of the glycan engineered RBD vaccine candidate across two platforms and a promising candidate as a broad variant booster vaccine.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Epitopos , Vacinas contra COVID-19 , Polissacarídeos , Anticorpos Neutralizantes
7.
Biotechnol Bioeng ; 120(9): 2639-2657, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36779302

RESUMO

We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50 /mL), more than 4-100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15-30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.


Assuntos
Vírus Oncolíticos , Animais , Vírus Oncolíticos/genética , Técnicas de Cultura de Células , Reatores Biológicos , Linhagem Celular , Vesiculovirus/genética , Cultura de Vírus
8.
Cureus ; 14(8): e28467, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36176842

RESUMO

Background Coronavirus disease 2019 (COVID-19) vaccination has substantially altered the course of the pandemic, saving tens of millions of lives globally. The problem is that despite such spectacular results, vaccination alone will not be able to control the COVID-19 pandemic because of the rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) even in vaccinated human populations. Therefore, the development of a post-infection, broad-based, orally administered antiviral therapy that would complement vaccination efforts is urgently needed. Methodology The so-called viral superinfection therapy (SIT) administers a nonpathogenic attenuated double-stranded RNA (dsRNA) vaccine virus drug candidate, the infectious bursal disease virus serotype R903/78 (IBDV-R903/78) that activates the interferon (IFN) genes, which are the natural, antiviral defense system of host cells. Results Here we present two cases of properly vaccinated (with BNT162b2-Pfizer) and booster-dosed COVID-19 patients with vaccine breakthrough infections whose disease duration was shortened to a few days by oral SIT. Conclusions SIT has already been demonstrated to be safe and effective against five different families of viruses, hepatitis A virus, hepatitis B virus, hepatitis C virus, SARS-CoV-2, and herpes zoster virus. The R903/78 drug candidate is simple to manufacture and easy to administer in an outpatient setting. The expected cost of SIT will be affordable even in resource-limited countries.

9.
Appl Microbiol Biotechnol ; 106(13-16): 4945-4961, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35767011

RESUMO

Oncolytic viruses (OVs) represent a novel class of immunotherapeutics under development for the treatment of cancers. OVs that express a cognate or transgenic fusion protein is particularly promising as their enhanced intratumoral spread via syncytia formation can be a potent mechanism for tumor lysis and induction of antitumor immune responses. Rapid and efficient fusion of infected cells results in cell death before high titers are reached. Although this is an attractive safety feature, it also presents unique challenges for large-scale clinical-grade manufacture of OVs. Here we evaluate the use of four different suspension cell lines for the production of a novel fusogenic hybrid of vesicular stomatitis virus and Newcastle disease virus (rVSV-NDV). The candidate cell lines were screened for growth, metabolism, and virus productivity. Permissivity was evaluated based on extracellular infectious virus titers and cell-specific virus yields (CSVYs). For additional process optimizations, virus adaptation and multiplicity of infection (MOI) screenings were performed and confirmed in a 1 L bioreactor. BHK-21 and HEK293SF cells infected at concentrations of 2 × 106 cells/mL were identified as promising candidates for rVSV-NDV production, leading to infectious titers of 3.0 × 108 TCID50/mL and 7.5 × 107 TCID50/mL, and CSVYs of 153 and 9, respectively. Compared to the AGE1.CR.pIX reference produced in adherent cultures, oncolytic potency was not affected by production in suspension cultures and possibly even increased in cultures of HEK293SF and AGE1.CR.pIX. Our study describes promising suspension cell-based processes for efficient large-scale manufacturing of rVSV-NDV. KEY POINTS: • Cell contact-dependent oncolytic virus (OV) replicates in suspension cells. • Oncolytic potency is not encompassed during suspension cultivation. • Media composition, cell line, and MOI are critical process parameters for OV production. • The designed process is scalable and shows great promise for manufacturing clinical-grade material.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Linhagem Celular , Vírus da Doença de Newcastle/genética , Vírus Oncolíticos/genética , Cultura de Vírus/métodos , Replicação Viral
10.
BMC Biotechnol ; 22(1): 17, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715843

RESUMO

BACKGROUND: Mass vaccination of dogs as important rabies reservoir is proposed to most effectively reduce and eliminate rabies also in humans. However, a minimum coverage of 70% needs to be achieved for control of the disease in zoonotic regions. In numerous developing countries, dog vaccination rate is still dangerously low because of economic constraints and due to a high turnover in dog populations. Improved vaccine production processes may help to alleviate cost and supply limitations. In this work, we studied and optimized the replication and vaccine potency of PV rabies virus strain in the muscovy-duck derived AGE1.CR and AGE1.CR.pIX suspension cell lines. RESULTS: The BHK-21-adapted PV rabies virus strain replicated efficiently in the avian cell lines without requirement for prior passaging. CR.pIX was previously shown to augment heat shock responses and supported slightly higher infectious titers compared to the parental CR cell line. Both cell lines allowed replication of rabies virus also in absence of recombinant IGF, the only complex component of the chemically defined medium that was developed for the two cell lines. After scale-up from optimization experiments in shake flask to production in 7-l bioreactors peak virus titers of 2.4 × 108 FFU/ml were obtained. The potency of inactivated rabies virus harvest according to the NIH test was 3.5 IU/ml. Perfusion with the chemically defined medium during the virus replication phase improved the potency of the vaccine twofold, and increased the number of doses 9.6 fold. CONCLUSION: This study demonstrates that a rabies vaccine for animal vaccination can be produced efficiently in the AGE1.CR.pIX suspension cell line in a scalable process in chemically defined medium.


Assuntos
Vacina Antirrábica , Raiva , Animais , Reatores Biológicos , Linhagem Celular , Cães , Patos , Raiva/prevenção & controle , Raiva/veterinária
11.
Infect Disord Drug Targets ; 22(7): 1-6, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35440336

RESUMO

More than 200 viruses infect humans, but treatments are available for less than ten of them. To narrow the gap between 'bugs and drugs,' a paradigm shift is required. The "one drug, one bug" approach can be expanded to a "one drug, multiple bugs" strategy such that the host's defense system is targeted rather than the virus. Viral superinfection therapy (SIT) activates interferon genes' natural, antiviral defense system of host cells following exposure to viral infection, e.g., superinfection with an attenuated infectious bursal disease virus (IBDV) with the release of its double-stranded RNA (dsRNA) cargo inside host cells. An attenuated IBDV therapeutic vaccine has successfully treated hepatitis A virus infection (HAV) in marmoset monkeys as well as acute hepatitis B and hepatitis C virus infections (HBV/HCV) in 42 patients. SIT has also been shown to be safe and effective in four patients with chronic HBV or HCV infection with hepatic decompensation. The proof-of-principle of SIT has also been demonstrated in a 43-year-old male patient with COVID-19. Three doses of orally administered IBDV (3x106 IU) alleviated most of his COVID-19 symptoms; even his sense of smell returned within a week. Two additional COVID-19 patients responded similarly to oral treatment with IBDV. Furthermore, a severe herpes zoster ophthalmicus outbreak with orbital edema responded to a combination of acyclovir and 7 doses of IBDV (7x106 IU) within a few days. IBDV is simple to manufacture and affordable, even in resource-limited settings. Acid-resistant IBDV can be orally administered in an outpatient setting, providing simple dosing and high medication adherence. Under an Emergency Use Authorization, the broad-spectrum IBDV drug candidate could be tested immediately in clinical trials and rapidly distributed to millions of early-stage patients with COVID-19. The German Paul Ehrlich Institute is currently supporting a phase I safety study for persons acutely infected with SARS­CoV-2. An expert team of the US National Institutes of Health-sponsored ACTIV public-private partnership came to the conclusion that the IBDV drug candidate shows merit as a potential treatment for COVID19, and an FDA-approved clinical trial is in the pipelines in Los Angeles.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32714908

RESUMO

Influenza viruses have been successfully propagated using a variety of animal cell lines in batch, fed-batch, and perfusion culture. For suspension cells, most studies reported on membrane-based cell retention devices typically leading to an accumulation of viruses in the bioreactor in perfusion mode. Aiming at continuous virus harvesting for improved productivities, an inclined settler was evaluated for influenza A virus (IAV) production using the avian suspension cell line AGE1.CR.pIX. Inclined settlers present many advantages as they are scalable, robust, and comply with cGMP regulations, e.g., for recombinant protein manufacturing. Perfusion rates up to 3000 L/day have been reported. In our study, successful growth of AGE1.CR.pIX cells up to 50 × 106 cells/mL and a cell retention efficiency exceeding 96% were obtained with the settler cooled to room temperature. No virus retention was observed. A total of 5.4-6.5 × 1013 virions were produced while a control experiment with an ATF system equaled to 1.9 × 1013 virions. For infection at 25 × 106 cells/mL, cell-specific virus yields up to 3474 virions/cell were obtained, about 5-fold higher than for an ATF based cultivation performed as a control (723 virions/cell). Trypsin activity was shown to have a large impact on cell growth dynamics after infection following the cell retention device, especially at a cell concentration of 50 × 106 cells/mL. Further control experiments performed with an acoustic settler showed that virus production was improved with a heat exchanger of the inclined settler operated at 27°C. In summary, cell culture-based production of viruses in perfusion mode with an inclined settler and continuous harvesting can drastically increase IAV yields and possibly the yield of other viruses. To our knowledge, this is the first report to show the potential of this device for viral vaccine production.

13.
Biotechnol Bioeng ; 117(5): 1533-1553, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022250

RESUMO

Mathematical modeling of animal cell growth and metabolism is essential for the understanding and improvement of the production of biopharmaceuticals. Models can explain the dynamic behavior of cell growth and product formation, support the identification of the most relevant parameters for process design, and significantly reduce the number of experiments to be performed for process optimization. Few dynamic models have been established that describe both extracellular and intracellular dynamics of growth and metabolism of animal cells. In this study, a model was developed, which comprises a set of 33 ordinary differential equations to describe batch cultivations of suspension AGE1.HN.AAT cells considered for the production of α1-antitrypsin. This model combines a segregated cell growth model with a structured model of intracellular metabolism. Overall, it considers the viable cell concentration, mean cell diameter, viable cell volume, concentration of extracellular substrates, and intracellular concentrations of key metabolites from the central carbon metabolism. Furthermore, the release of metabolic by-products such as lactate and ammonium was estimated directly from the intracellular reactions. Based on the same set of parameters, this model simulates well the dynamics of four independent batch cultivations. Analysis of the simulated intracellular rates revealed at least two distinct cellular physiological states. The first physiological state was characterized by a high glycolytic rate and high lactate production. Whereas the second state was characterized by efficient adenosine triphosphate production, a low glycolytic rate, and reactions of the TCA cycle running in the reverse direction from α-ketoglutarate to citrate. Finally, we show possible applications of the model for cell line engineering and media optimization with two case studies.


Assuntos
Processos de Crescimento Celular/fisiologia , Espaço Intracelular/metabolismo , Modelos Biológicos , Reatores Biológicos , Engenharia Celular , Linhagem Celular , Ciclo do Ácido Cítrico/fisiologia , Espaço Extracelular/metabolismo , Glicólise/fisiologia , Humanos , Cinética
14.
Virol Sin ; 35(2): 212-226, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31833037

RESUMO

Vectored vaccines based on highly attenuated modified vaccinia Ankara (MVA) are reported to be immunogenic, tolerant to pre-existing immunity, and able to accommodate and stably maintain very large transgenes. MVA is usually produced on primary chicken embryo fibroblasts, but production processes based on continuous cell lines emerge as increasingly robust and cost-effective alternatives. An isolate of a hitherto undescribed genotype was recovered by passage of a non-plaque-purified preparation of MVA in a continuous anatine suspension cell line (CR.pIX) in chemically defined medium. The novel isolate (MVA-CR19) replicated to higher infectious titers in the extracellular volume of suspension cultures and induced fewer syncytia in adherent cultures. We now extend previous studies with the investigation of the point mutations in structural genes of MVA-CR19 and describe an additional point mutation in a regulatory gene. We furthermore map and discuss an extensive rearrangement of the left telomer of MVA-CR19 that appears to have occurred by duplication of the right telomer. This event caused deletions and duplications of genes that may modulate immunologic properties of MVA-CR19 as a vaccine vector. Our characterizations also highlight the exceptional genetic stability of plaque-purified MVA: although the phenotype of MVA-CR19 appears to be advantageous for replication, we found that all genetic markers that differentiate wildtype and MVA-CR19 are stably maintained in passages of recombinant viruses based on either wildtype or MVA-CR.


Assuntos
Vetores Genéticos , Instabilidade Genômica , Deleção de Sequência , Vírus Vaccinia/genética , Vírus Vaccinia/isolamento & purificação , Replicação Viral , Animais , Linhagem Celular , Patos , Genótipo , Mutação Puntual , Recombinação Genética , Ensaio de Placa Viral
15.
PLoS One ; 14(11): e0224317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31689309

RESUMO

Continuous cell culture-based influenza vaccine production could significantly reduce footprint and manufacturing costs compared to current batch processing. However, yields of influenza virus in continuous mode can be affected by oscillations in virus titers caused by periodic accumulation of defective interfering particles. The generation of such particles has also been observed previously in cascades of continuous stirred tank reactors (CSTRs) and is known as the "von Magnus effect". To improve virus yields and to avoid these oscillations, we have developed a novel continuous tubular bioreactor system for influenza A virus production. It was built using a 500 mL CSTR for cell growth linked to a 105 m long tubular plug-flow bioreactor (PFBR). Virus propagation took place only in the PFBR with a nominal residence time of 20 h and a production capacity of 0.2 mL/min. The bioreactor was first tested with suspension MDCK cells at different multiplicities of infection (MOI), and then with suspension avian AGE1.CR.pIX cells at a fixed nominal MOI of 0.02. Maximum hemagglutinin (HA) titers of 2.4 and 1.6 log10(HA units/100 µL) for suspension MDCK cells and AGE1.CR.pIX cells, respectively, were obtained. Flow cytometric analysis demonstrated that 100% infected cells with batch-like HA titers can be obtained at a MOI of at least 0.1. Stable HA and TCID50 titers over 18 days of production were confirmed using the AGE1.CR.pIX cell line, and PCR analysis demonstrated stable production of full-length genome. The contamination level of segments with deletions (potentially defective interfering particles), already present in the virus seed, was low and did not increase. Control experiments using batch and semi-continuous cultures confirmed these findings. A comparison showed that influenza virus production can be achieved with the tubular bioreactor system in about half the time with a space-time-yield up to two times higher than for typical batch cultures. In summary, a novel continuous tubular bioreactor system for cell culture-based influenza virus production was developed. One main advantage, an essentially single-passage amplification of viruses, should enable efficient production of vaccines as well as vectors for gene and cancer therapy.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vacinas contra Influenza/isolamento & purificação , Cultura de Vírus/métodos , Animais , Técnicas de Cultura Celular por Lotes/instrumentação , Aves , Cães , Vírus da Influenza A Subtipo H1N1/imunologia , Células Madin Darby de Rim Canino , Cultura de Vírus/instrumentação , Replicação Viral
16.
Vaccine ; 37(47): 7011-7018, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31266669

RESUMO

Driven by the concept of plug-and-play cell culture-based viral vaccine production using disposable bioreactors, we evaluated an orbital shaken bioreactor (OSB) for human influenza A virus production at high cell concentration. Therefore, the OSB model SB10-X was coupled to two hollow fiber-based perfusion systems, namely, tangential flow filtration (TFF) and alternating tangential flow filtration (ATF). The AGE1.CR.pIX avian suspension cells grew to 50 × 106 cells/mL in chemically defined medium, maintaining high cell viabilities with an average specific growth rate of 0.020 h-1 (doubling time = 32 h). Maximum virus titers in the range of 3.28-3.73 log10(HA units/100 µL) were achieved, corresponding to cell-specific virus yields of 1000-3500 virions/cell and productivities of 0.5-2.2 × 1012 virions/L/d. This clearly demonstrates the potential of OSB operation in perfusion mode, as results achieved in a reference OSB batch cultivation were 2.64 log10(HA units/100 µL), 1286 virions/cell and 1.4 × 1012 virions/L/d, respectively. In summary, the SB10-X bioreactor can be operated with ATF and TFF systems, which is to our knowledge the first report regarding OSB operation in perfusion mode. Moreover, the results showed that the system is a promising cultivation system for influenza A virus vaccine production. The OSB disposable bioreactor has the potential for simplifying the scale-up from shake flasks to the large-scale bioreactor, facilitating rapid responses in the event of epidemics or pandemics.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos/virologia , Filtração/métodos , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/imunologia , Animais , Aves/virologia , Linhagem Celular , Sobrevivência Celular/imunologia , Influenza Aviária/imunologia , Vacinas Virais/imunologia , Vírion/imunologia , Cultura de Vírus/métodos , Replicação Viral/imunologia
17.
Bioengineering (Basel) ; 6(3)2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31330921

RESUMO

Oxidation of monoclonal antibodies (mAbs) can impact their efficacy and may therefore represent critical quality attributes (CQA) that require evaluation. To complement classical CQA, bevacizumab and infliximab were subjected to oxidative stress by H2O2 for 24, 48, or 72 h to probe their oxidation susceptibility. For investigation, a middle-up approach was used utilizing liquid chromatography hyphenated with mass spectrometry (LC-QTOF-MS). In both mAbs, the Fc/2 subunit was completely oxidized. Additional oxidations were found in the light chain (LC) and in the Fd' subunit of infliximab, but not in bevacizumab. By direct comparison of methionine positions, the oxidized residues in infliximab were assigned to M55 in LC and M18 in Fd'. The forced oxidation approach was further exploited for comparison of respective biosimilar products. Both for bevacizumab and infliximab, comparison of posttranslational modification profiles demonstrated high similarity of the unstressed reference product (RP) and the biosimilar (BS). However, for bevacizumab, comparison after forced oxidation revealed a higher susceptibility of the BS compared to the RP. It may thus be considered a useful tool for biopharmaceutical engineering, biosimilarity assessment, as well as for quality control of protein drugs.

18.
Vaccine ; 37(47): 7019-7028, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31005427

RESUMO

Seasonal and pandemic influenza respiratory infections are still a major public health issue. Vaccination is the most efficient way to prevent influenza infection. One option to produce influenza vaccines is cell-culture based virus propagation. Different host cell lines, such as MDCK, Vero, AGE1.CR or PER.C6 cells have been shown to be a good substrate for influenza virus production. With respect to the ease of scale-up, suspension cells should be preferred over adherent cells. Ideally, they should replicate different influenza virus strains with high cell-specific yields. Evaluation of new cell lines and further development of processes is of considerable interest, as this increases the number of options regarding the design of manufacturing processes, flexibility of vaccine production and efficiency. Here, PBG.PK2.1, a new mammalian cell line that was developed by ProBioGen AG (Germany) for virus production is presented. The cells derived from immortal porcine kidney cells were previously adapted to growth in suspension in a chemically-defined medium. Influenza virus production was improved after virus adaptation to PBG.PK2.1 cells and optimization of infection conditions, namely multiplicity of infection and trypsin concentration. Hemagglutinin titers up to 3.24 log10(HA units/100 µL) were obtained in fed-batch mode in bioreactors (700 mL working volume). Evaluation of virus propagation in high cell density culture using a hollow-fiber based system (ATF2) demonstrated promising performance: Cell concentrations of up to 50 × 106 cells/mL with viabilities exceeding 95%, and a maximum HA titer of 3.93 log10(HA units/100 µL). Analysis of glycosylation of the viral HA antigen expressed showed clear differences compared to HA produced in MDCK or Vero cell lines. With an average cell-specific productivity of 5000 virions/cell, we believe that PBG.PK2.1 cells are a very promising candidate to be considered for next-generation influenza virus vaccine production.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos/virologia , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/imunologia , Cultura de Vírus/métodos , Animais , Contagem de Células/métodos , Linhagem Celular , Cães , Vacinas contra Influenza/imunologia , Células Madin Darby de Rim Canino , Suínos , Vírion/imunologia
19.
Appl Microbiol Biotechnol ; 103(7): 3025-3035, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30796494

RESUMO

A cultivation strategy to increase the productivity of Modified Vaccinia Ankara (MVA) virus in high-cell density processes is presented. Based on an approach developed in shake flask cultures, this strategy was established in benchtop bioreactors, comprising the growth of suspension AGE1.CR.pIX cells to high cell densities in a chemically defined medium before infection with the MVA-CR19 virus strain. First, a perfusion regime was established to optimize the cell growth phase. Second, a fed-batch regime was chosen for the initial infection phase to facilitate virus uptake and cell-to-cell spreading. Afterwards, a switch to perfusion enabled the continuous supply of nutrients for the late stages of virus propagation. With maximum infectious titers of 1.0 × 1010 IU/mL, this hybrid fed-batch/perfusion strategy increased product titers by almost one order of magnitude compared to conventional batch cultivations. Finally, this strategy was also applied to the production of influenza A/PR/8/34 (H1N1) virus considered for manufacturing of inactivated vaccines. Using the same culture system, a total number of 3.8 × 1010 virions/mL was achieved. Overall, comparable or even higher cell-specific virus yields and volumetric productivities were obtained using the same cultivation systems as for the conventional batch cultivations. In addition, most viral particles were found in the culture supernatant, which can simplify further downstream operations, in particular for MVA viruses. Considering the current availability of well-described perfusion/cell retention technologies, the present strategy may contribute to the development of new approaches for viral vaccine production.


Assuntos
Técnicas de Cultura Celular por Lotes , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus Vaccinia/crescimento & desenvolvimento , Cultura de Vírus/métodos , Animais , Reatores Biológicos , Linhagem Celular , Patos , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus Vaccinia/fisiologia , Vírion/crescimento & desenvolvimento , Vírion/fisiologia , Replicação Viral
20.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232179

RESUMO

Oncolytic viruses represent an exciting new aspect of the evolving field of cancer immunotherapy. We have engineered a novel hybrid vector comprising vesicular stomatitis virus (VSV) and Newcastle disease virus (NDV), named recombinant VSV-NDV (rVSV-NDV), wherein the VSV backbone is conserved but its glycoprotein has been replaced by the hemagglutinin-neuraminidase (HN) and the modified, hyperfusogenic fusion (F) envelope proteins of recombinant NDV. In comparison to wild-type VSV, which kills cells through a classical cytopathic effect, the recombinant virus is able to induce tumor-specific syncytium formation, allowing efficient cell-to-cell spread of the virus and a rapid onset of immunogenic cell death. Furthermore, the glycoprotein exchange substantially abrogates the off-target effects in brain and liver tissue associated with wild-type VSV, resulting in a markedly enhanced safety profile, even in immune-deficient NOD.CB17-prkdcscid/NCrCrl (NOD-SCID) mice, which are highly susceptible to wild-type VSV. Although NDV causes severe pathogenicity in its natural avian hosts, the incorporation of the envelope proteins in the chimeric rVSV-NDV vector is avirulent in embryonated chicken eggs. Finally, systemic administration of rVSV-NDV in orthotopic hepatocellular carcinoma (HCC)-bearing immune-competent mice resulted in significant survival prolongation. This strategy, therefore, combines the beneficial properties of the rapidly replicating VSV platform with the highly efficient spread and immunogenic cell death of a fusogenic virus without risking the safety and environmental threats associated with either parental vector. Taking the data together, rVSV-NDV represents an attractive vector platform for clinical translation as a safe and effective oncolytic virus.IMPORTANCE The therapeutic efficacy of oncolytic viral therapy often comes as a tradeoff with safety, such that potent vectors are often associated with toxicity, while safer viruses tend to have attenuated therapeutic effects. Despite promising preclinical data, the development of VSV as a clinical agent has been substantially hampered by the fact that severe neurotoxicity and hepatotoxicity have been observed in rodents and nonhuman primates in response to treatment with wild-type VSV. Although NDV has been shown to have an attractive safety profile in humans and to have promising oncolytic effects, its further development has been severely restricted due to the environmental risks that it poses. The hybrid rVSV-NDV vector, therefore, represents an extremely promising vector platform in that it has been rationally designed to be safe, with respect to both the recipient and the environment, while being simultaneously effective, both through its direct oncolytic actions and through induction of immunogenic cell death.


Assuntos
Carcinoma Hepatocelular/terapia , Vetores Genéticos/administração & dosagem , Neoplasias Hepáticas/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Sobrevivência Celular , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Vírus da Doença de Newcastle/genética , Células Tumorais Cultivadas , Vírus da Estomatite Vesicular Indiana/genética , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...